The European Union’s visions for a healthier, wealthier, more sustainable society are intertwined with its ambitions for artificial intelligence (AI). The ELISE network is building a powerhouse of European AI that can deliver these goals. This refresh of our Strategic Research Agenda shows how sustained investment can ensure the long-term success of this innovation ecosystem.
The European Union’s visions of a healthier, wealthier, more sustainable society are intertwined with its ambitions for artificial intelligence (AI). Those ambitions seek to achieve European excellence in this strategically important technology area, to generate economic and societal benefits through AI adoption across sectors, and to create an ecosystem of trust that aligns AI progress with public interests. The ELISE network is building a powerhouse of European AI that can deliver these goals.
By accelerating the technical capabilities of AI technologies, improving their performance in deployment, and aligning AI development with societal needs, the first phase of ELISE’s work has already nurtured a thriving research and innovation community. Building on these successes, this refresh of its Strategic Research Agenda shows how sustained investment can ensure the long-term success of this innovation ecosystem.
ELISE’s 2021 Strategic Research Agenda set out the research challenges that needed to be addressed to strengthen the technical capabilities of AI; improve its performance in deployment; and align AI development with societal interests.
This Agenda sought to bridge between the frontiers of technology development and the EU’s AI policy agendas, recognising that the success of those policy agendas would depend on Europe’s ability to pursue excellent research that both advances foundational AI technologies and applies those technologies to areas of critical social and scientific need.
ELISE is driving a new wave of research and development to deliver AI ‘made in Europe’. Together, its 14 research programmes create AI methods, techniques, and toolkits that are technically innovative, safe, and effective in deployment, while being aligned with social needs. By combining our research agenda with initiatives to attract top talent to Europe, train the next generation of AI researchers, and enhance local start-up and innovation networks, ELISE is creating a European AI ecosystem of excellence and trust.
Methods and tools to analyse real-world, multi-modal data; Strengthen core machine learning capabilities, through methodological and theoretical advances, such as techniques to bridge between data-driven and domain knowledge; Interrogate workings of complex systems through advances in simulation, emulation, and causality.
AI that is robust under dynamic or uncertain conditions; Human-centric tools that are effective as decision-support; Methods to enhance explainability in decision-making.
Techniques for trustworthy AI; Deployed AI that is integrated into areas of critical need; AI research and development that engages stakeholder perspectives.
To advance the theoretical underpinnings and algorithmic capabilities of machine learning, creating more reliable, efficient and usable machine learning systems.
Julien Mairal (Grenoble)
INRIA
Thomas Schön (Uppsala)
Uppsala University
Ulrike von Luxburg (Tübingen)
University of Tübingen
Arthur Gretton (London)
Gatsby Computational Neuroscience Unit; UCL
Matthias Hein (Tübingen)
University of Tübingen
Mário A. T. Figueiredo (Lisbon)
Instituto Superior Técnico
Asja Fischer (Bochum)
Ruhr-Universität Bochum
Martin Jaggi (Lausanne)
EPFL
Simo Särkkä (Aalto)
Aalto University
Ingo Steinwart (Stuttgart)
Universität Stuttgart
Michael A. Osborne (Oxford)
University of Oxford
Manon Kok (Delft)
Delft University of Technology
Arno Solin (Espoo)
Aalto University
Florence d'Alché-Buc (Paris)
Institut Polytechnique de Paris
Niao He (Zürich)
ETH Zürich
To become a cumulation point of like-minded researchers and we expect fruitful interactions with closely related programs covering, e.g., NLP, vision, and geometric deep learning.
Peter Flach (Bristol)
University of Bristol
Marco Gori (Siena)
University of Siena
Marta Kwiatkowska (Oxford)
University of Oxford
Nada Lavrac (Ljubljana)
Jožef Stefan Institute; University of Nova Gorica
Jens Lehmann (Dresden)
Amazon; TU Dresden
Eran Yahav (Haifa)
Technion
Tim Rocktäschel (London)
DeepMind; UCL
Edward Grefenstette (London)
Cohere; UCL
Michela Milano (Bologna)
Università di Bologna
Thomas Kipf (Amsterdam)
Google Brain
Luc De Raedt (Leuven)
KU Leuven
Stephen Muggleton (London)
Imperial College London
To understand the principles and develop the techniques for machine learning that reliably performs well.
Zoubin Ghahramani (Cambridge)
University of Cambridge
Frank Hutter (Freiburg)
Albert-Ludwigs-Universität Freiburg
Cédric Archambeau (Berlin)
Amazon Web Services
Chris Williams (Edinburgh)
University of Edinburgh
Sebastian Nowozin (London)
DeepMind
Peter Grünwald (Amsterdam; Leiden)
CWI; Leiden University
Silvia Chiappa (London)
DeepMind
Yarin Gal (Oxford)
University of Oxford
Amir Globerson (Tel Aviv)
Tel Aviv University
Antti Oulasvirta (Espoo)
Aalto University; Finnish Center for Artificial Intelligence
Richard E. Turner (Cambridge)
University of Cambridge
Isabel Valera (Saarbrücken)
Saarland University
Aki Vehtari (Espoo)
Aalto University
Pushmeet Kohli (London)
DeepMind
To design new, energy-efficient machine learning algorithms and hardware implementations, drawing from concepts in quantum physics and statistical physics to develop more powerful machine learning systems.
Lenka Zdeborová (Lausanne)
EPFL
Florian Marquardt (Erlangen)
Max Planck Institute for the Science of Light
Giuseppe Carleo (Lausanne)
EPFL
Matthias Rupp (Esch-Sur-Alzette)
Luxembourg Institute of Science and Technology
Gábor Csányi (Cambridge)
University of Cambridge
Giuseppe E. Santoro (Paris)
École Polytechnique
Carlo Baldassi (Milan)
Università Bocconi
Remi Monasson (Paris)
CNRS
Giulio Biroli (Paris)
Ecole Normale Supérieure
Vedran Dunjko (Leiden)
University of Leiden
Florent Krzakala (Lausanne)
EPFL
Miguel A. Martin-Delgado (Madrid)
Universidad Complutense de Madrid
Frank Noé (Berlin)
Microsoft Research; Freie Universität Berlin
Hans J. Briegel (Innsbruck)
Universität Innsbruck
Jens Eisert (Berlin)
Freie Universität Berlin
David Gross (Cologne)
University of Cologne
To push the boundaries of the foundational aspects of this field, to build bridges between researchers and practitioners currently active in multiple unimodal communities, as well as expanding and exploring the applications of multimodal learning systems.
Alberto Del Bimbo (Florence)
Università di Firenze
Björn Schuller (Augsburg)
University of Augsburg
Elisa Ricci (Trento)
University of Trento; Fondazione Bruno Kessler (FBK)
Elisabeth André (Augsburg)
University of Augsburg
Sabine Süsstrunk (Lausanne)
EPFL
Shaogang Gong (London)
Queen Mary University of London
Timothy M. Hospedales (Edinburgh; Cambridge)
University of Edinburgh; Samsung AI Research Centre
Vittorio Ferrari (Edinburgh)
Google; University of Edinburgh
Vittorio Murino (Verona)
University of Verona; Italian Institute of Technology
Hervé Jégou (Paris)
Meta Research
To create AI tools that can contribute to humanity’s response to the climate crisis, increasing understanding of climate extremes, changes to earth systems and potential areas for intervention.
Dino Sejdinovic (Adelaide)
The University of Adelaide
Konrad Schindler (Zürich)
ETH Zürich
Joachim Denzler (Jena)
Friedrich-Schiller-Universität Jena
Jakob Runge (Berlin)
German Aerospace Center’s Institute of Data Science; Technische Universität (TU) Berlin
Sancho Salcedo-Sanz (Madrid)
Universidad de Alcalá
Devis Tuia (Lausanne)
EPFL
Xiaoxiang Zhu (Munich)
Technische Universität München
Veronika Eyring (Wessling; Bremen)
Deutsches Zentrum für Luft- und Raumfahrt e.V.; University of Bremen
Maria Piles (València)
Universitat de València
Jakob Zscheischler (Leipzig)
Helmholtz Centre for Environmental Research
Jocelyn Chanussot (Grenoble)
Grenoble Institute of Technology
Miguel D. Mahecha (Leipzig)
Leipzig University
Nuno Carvalhais (Jena)
Max Planck Institute for Biogeochemistry
Jonas Peters (Copenhagen)
University of Copenhagen
To build bridges between classical algorithms and machine learning to unlock further advances in computer vision.
Michael J. Black (Tübingen)
MPI-IS Tübingen
Tomas Pajdla (Prague)
Czech Technical University in Prague
Stefan Roth (Darmstadt)
Technische Universität Darmstadt
Andreas Geiger (Tübingen)
University of Tübingen
Thomas Brox (Freiburg)
University of Freiburg
Rita Cucchiara (Modena)
Università degli Studi di Modena e Reggio Emilia
Zeynep Akata (Tübingen)
University of Tübingen
Luc Van Gool (Zürich)
ETH Zürich
Andrea Vedaldi (Oxford)
University of Oxford
Andrew Zisserman (Oxford)
University of Oxford
Michal Irani (Rehovot)
Weizmann Institute of Science
Ivan Laptev (Paris)
INRIA
Tinne Tuytelaars (Leuven)
KU Leuven
Josef Sivic (Paris)
INRIA
Jiri Matas (Prague)
Czech Technical University, Prague
Andrew Blake (Cambridge)
Samsung
Jean Ponce (Paris)
INRIA
Daniel Cremers (Munich)
Technical University of Munich
To create robotic systems that can interact intelligently with the world around them.
Ingmar Posner (Oxford)
Oxford Robotics Unit
Oliver Brock (Berlin)
Technische Universitat Berlin
Dario Floreano (Lausanne)
EPFL Switzerland
Danica Kragic (Stockholm)
KTH - Royal Institute of Technology
Manual Lopes (Lisbon)
Instituto Superior Técnico
Gerhard Neumann (Karlsruhe)
Karlsruhe Institute of Technology
Justus Piater (Innsbruck)
Universitat Innsbruck
Davide Scaramuzza (Zurich)
University of Zurich
Carme Torras (Barcelona)
The Institut de Robòtica i Informàtica Industrial
Mark Tousaint (Berlin)
TU Berlin
Aleš Ude (Ljubljana)
Jožef Stefan Institute
Patrick van der Smagt (Munich)
Volkswagen Group Machine Learning Research Lab
Sethu Vijayakumar (Edinburgh)
University of Edinburgh
Wolfram Burgard (Freiburg)
University of Frieburg
Paul Newman (Oxford)
University of Oxford
Martin Riedmiller (London)
DeepMind
To explore the role of causal modelling in bridging the gap between observational and interventional learning and understand the principles underlying interactive learning systems.
Massimiliano Pontil (Genoa)
Italian Institute of Technology (IIT)
Barbara Caputo (Torino)
Politecnico di Torino
Christoph H. Lampert (Klosterneuburg)
Institute of Science and Technology Austria
Volkan Cevher (Lausanne)
EPFL
Shie Mannor (Haifa)
Technion; NVIDIA
Carl Edward Rasmussen (Cambridge)
University of Cambridge
Csaba Szepesvari (Alberta)
University of Alberta
Chris Watkins (London)
Royal Holloway, University of London
Shimon Whiteson (Oxford)
University of Oxford
Yishay Mansour (Tel Aviv)
Tel Aviv University
Nicolas Heess (London)
UCL
Marc Deisenroth (London)
UCL
Negar Kiyavash (Lausanne)
EPFL
Gergely Neu (Barcelona)
Universitat Pompeu Fabra
Wouter M. Koolen (Amsterdam)
CWI; University of Twente
John Shawe-Taylor (London)
UCL
To create AI systems that can be used to monitor patient health, using complex datasets to inform decision-support systems and to foster breakthrough applications in healthcare and biomedicine.
Jean-Philippe Vert (Paris)
Owkin
Sepp Hochreiter (Linz)
Johannes Kepler University Linz
Fabian Theis (Munich)
Helmholtz Munich; Technical University of Munich
Matthew Blaschko (Leuven)
KU Leuven
Christoph Bock (Vienna)
Medical University of Vienna
Julia A. Schnabel (London)
King's College London
Guido Sanguinetti (Edinburgh)
University of Edinburgh
Lena Maier-Hein (Heidelberg)
German Cancer Research Center
Magnus Rattray (Manchester)
University of Manchester
Karsten Borgwardt (Munich)
MPI of Biochemistry
To build systems for general-purpose natural language understanding and generation.
Phil Blunsom (Oxford)
University of Oxford
Anna Korhonen (Cambridge)
University of Cambridge
Marie-Francine (Leuven)
Moens KU Leuven
Rico Sennrich (Zurich)
University of Zurich
Hinrich Schütze (Munich)
University of Munich
Omri Abend (Jerusalem)
The Hebrew University of Jerusalem
Isabelle Augenstein (Copenhagen)
University of Copenhagen
Jonathan Berant (Tel-Aviv)
Tel-Aviv University
Shay Cohen (Edinburgh)
University of Edinburgh
Ryan Cotterell (Zürich)
ETH Zürich
Barbara Plank (Munich)
LMU Munich
Roi Reichart (Haifa)
Technion
Lucia Specia (London)
Imperial College London
Yoav Goldberg (Tel Aviv)
Bar Ilan University
Mirella Lapata (Edinburgh)
University of Edinburgh
Sebastian Riedel (London)
DeepMind; UCL
To advance the science of artificial intelligence by better understanding the intelligent behaviour of living systems and how this emerges.
Oriol Vinyals (London)
DeepMind
Timothy Behrens (Oxford)
University of Oxford
Matthew Botvinick (London)
DeepMind
Emmanuel Dupoux (Paris)
École des Hautes Etudes en Sciences Sociales
Sharon Goldwater (Edinburgh)
University of Edinburgh
Raia Hadsell (London)
DeepMind
Anne Hsu (London)
Queen Mary University of London
Bradley C. Love (London)
UCL
Mackenzie Mathis (Lausanne)
EPFL
Jane X. Wang (London)
DeepMind
Nick Chater (Warwick)
University of Warwick
Chelsea Finn (California)
Stanford University
To develop novel machine learning algorithms that are better aligned with human needs and societal interests, for example taking into account concerns around fairness, privacy, accountability, transparency and autonomy.
Manuel Gomez Rodriguez (Saarbrücken)
Max Planck Institute for Software Systems
Christian Theobalt (Saarbrücken)
Saarland University
Nozha Boujemaa (Paris)
Inria
Carlos Castillo (Barcelona)
Universitat Pompeu Fabra
Ciro Cattuto (Torino)
ISI Foundation
Sergio Escalera (Barcelona)
Universitat de Barcelona
Bruno Lepri (Trento)
Center for Information and Communication Technology; Fondazione Bruno Kessler
Chris Russell (Berlin)
Amazon Web Services
Karen Yeung (Birmingham)
University of Birmingham
Thomas Hofmann (Zürich)
ETH Zürich
Novi Quadrianto (Sussex)
University of Sussex
Emilia Gómez (Seville)
Joint Research Centre (European Commission); Universitat Pompeu Fabra
To improve the performance of deep learning algorithms in non-Euclidean spaces, and in so doing identify new applications, efficient implementations and symmetries in data that can be used to advance the use of deep learning methods.
Pascal Frossard (Lausanne)
EPFL
Stefanos Zafeiriou (London)
University College London
Pietro Lio (Cambridge)
University of Cambridge
Sonia Petrone (Milan)
University Bocconi
Marinka Zitnik (Boston)
Harvard
Petar Velikovnik (London)
DeepMind
Emanuele Rodola (Rome)
Sapienza University of Rome
Dorina Thanou (Lausanne)
EPFL
Cesare Alippi (Lugano)
Università della Svizzera italiana
Taco Cohen (Amsterdam)
Qualcomm